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ABSTRACT

A high-aspect-ratio planing surface gliding on a
stream of an infinitely deep, incompressible, inviscid and
gravity-free fluid is treated. This complicated problem is
decomposed into two relatively simpler boundary-value
problems.

The near-field boundary-value problem is valid only in
the neighborhood of the planing surface. The problem is
solved by the classic hodograph method. The second-order
inner problem is also shown to be a plane, irrotational
flow and the solution is obtained by following the same
procedure as given in the first-order inner solution.

The far-field boundary-value problem is valid only
far away from the planing surface. The first-order outer
solution is shown to be a trivial uniform flow. The outer
velocity potential is defined in the whole space by har-
monic continuation. The second-order solution is then
shown to be similar to a lifting line solution.

The unknown strength of singularities is obtained by
matching of the velocity potential. Then, a matching of
the free-surface deflection provides a height reference for
the planing surface. The location of che planing surface
with respect to the undisturbed free surface is uniquely
defined.

In order to obtain a unique second~-order solution, it
is necessary to solve the third-order outer solution. The

detail of this solution is presented.
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A numerical solution for a planing plate of arbitrary

angle of attack is presented. A downwash correction is
also included.

It is shown mathematically that the present theory
can be applied to V-shape or general shape planing surfaces

with curvature in the spanwise direction.
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I. INTRODUCTION

I. 1. Introduction and Review

With the appearance of seaplanes and high speed
planing boats, the problems associated with planing surfaces
became practical problems. It is interesting to note that
the first experiment with a flat planing surface was carried

out in 1912,1

which was followed by a series of both theoreti-~
cal and experimental investigations.

At rest and low forward speeds the planing boat is
supported by buoyancy force. As speed increases, the center
of gravity gradually begins to rise. The center of pressure
on ti. : bottom shifts toward the nose and increases the trim
by the stern. With further increase in the speed, the wetted

area decreases, the mean draft of the hull becomes so slight

that most of its weight is supported by the dynamic lift

acting on its bottom, and the hydrostatic force is very small.?

This condition is called planing and the bottom surface which

is in contact with water is called the planing surface.

Wagner,3 in his fundamental paper, showed that for infini-

tely small angles of attack, with irrotational and gravity-
free motion, the flow on the lower surface of a planing
surface is comparable with that on the inwer surface of an
airfoil. The lift of a planing surface is approximately half

as great as that of an infinitely thin airfoil whose plan

4,5 6

corresponds to the wetted surface. Sottorf and Sambraus

m. 8 e b o
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iadicated a satisfactory agreement for moderately small
anales of attack between their test data on flat planing sur-
faces and Wagner's theory. However, Wagner's method is approx-
imate ard, strictly, only applies when the angle of incidence
of the gliding plate to the strear is moderately smail; more-
over, his solution requires that the direction of the jet or
spray which is formed should be parallel to the length of
the plate. 1In the middle 1930's, A. E. Greel'l-l’8 presented
several papers on this subject. He treated a two dimensional
plate gliding on the surface .,f a gravity-free stream of
infinite depth. He was able to obtain a complete solution
of a two dimensional gravity-free planing-plate problem,
satisfying the non-linear free-surface boundary conditions
exactly.

However, his solution is not unique.9 There is another
anomaly in Wagner's and Green's theories of infinitely deep
water: their theories imply that the free-surface elevation
infinitely far upstream and downstream is depressed an
infinite amount.

The principal difficulty of a free surface problem is
that both the dynamic and kinematic free-surface boundary
conditions are non-linear. Worse than that,the free
surface on which the conditions are to be applied is not
known 1 pricri; it has to be found as part of the problem
solution. To overcome this difficulty, another approach

is found in the literature. Assume the disturbance is




small; then the problem can be linearized. It is assumed that
the error is of high order if the free surface boundary
conditicns and the body condition are applied on the undisturb-
ed free surface instead of on actual positions of free surface
and body surface. Then the higher order terms in the free
surface boundary conditions are neglected compared to the
linear term. 1In this way the two dimensional boundary-value
problem i3 reduced to an integral equation which was first

solved by Sretensky],'o later by Maruo11 -

and Cumberbatch.
Lamb13 considered the two dimensional flow due to the appli-
cation of a pressure distribution on the surface of a stream.
He computed two simple pressure distributions for which the
integrals can be evaluated to give the shape of the planing
surface. Such linearized solutions give a good approximation
to the expected physical behavior, except in the neighborhood
of the plate, wherzs the flow near the stagnation point and
the spray sheet can not be regarded as small perturbations

of the uniform stream.

14 and Wu15

Rispin used the singular perturbation method
to rolve the two dimensional non-linear planing problem by
including gravity effects. They obtained a complete solution
which includes an inner expansion and an outer expansion.
Both anomalies in Wagner's and Green's classic solutions

were removed.

In the experimental approach, Shoemaker16 made a test




for V-shaped as well as flat-plate planing surfaces. Korvin-

Kroukovskyl7 gave an empirical formula for lift calculation.

Shufordla’19

gave a review of planing theory and experiment
of rectangular flat piates. Using the semi-empirical formula,
the effects of cross section and plan form were included.
Progress in developing a three dimensional theoretical
approach is rather slow. Using linearized theory, Maruo20
obtained an approximate solution from the integral egquation
for high-and low-aspect-ratio planing-surface proktlems.
A low-aspect-ratio planing surface has been treated as a

slender body by Tulin,21

without matched expansions and by
Ogilvie,22 witn matched expansions.

A low-aspect-ratio planing surface is relatively ineffi-
cient in producing 1lift force; more area has to be provided
for a given 1ift, with a resulting penalty in lift-drag ratio
compared to that of a high-aspect-ratio surface such as a

hydrofoil. Clement?3

proposed a new plan ‘orm with a re-
entrant step in his planing boat design. Brown and Van
Dyck24

aspect-ratio re-entrant step planing surface, with an encoura-
25

made an experimental investigation on this high-

ging result. Current development of practical stabilizers
is proceeding rapidly enough that within a few years a high-
aspect-ratio planing boat will become practical.

In his experimental studies on a rectangular-plan-form,

26

high-aspect-ratio, planing plate, Mottard found that an
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instability quite similar to the flutter of an airfoil takes

place even if only a single degree of freedsm, such as heave

motion, is present. This is a rather interesting result.

In aerodynamics, the occurrence of flutter normally requires
that two vibrational degrees of freedom be involved. Ogilvie27
linearized the lifting-surface problem in the manner of
Wagner and solved this two dimensional hydrodynamic problem

in the presence of heave motion. l.e obtained a parameter v,

a reduced frequency, which characterized the occurrence of
instability. His theoretical result agrees very well with
Mottard's experimental data. In order to solve a three
dimensional instability problem, a three dimensional steady
state hydrodynamic problem has to be solved first. This is

the aim of the present work.

‘mqum!@mwgswmm@mw%wwm”ﬂ vprnes S o e,

I. 2. Scope and Nature of the Selution

The trailing edge at the step of a planing boat is a
straight line. The contours of the bottom lines of the
planing surface in the immediate neighborhood cf the step
closely approximate those of a flat plate. As the speed
of the planing surface increases, the wetted-aspect-ratio,
AR, increases rapidly. The hydrostatic force and friction
force become negligible compared to the increased hydro-
dynamic force. In the present study, only the limiting
high-speed case of inviscid flow will be considered; that

is, the effects of gravity and viscosity are neglected.




In order to apply the hodograph method, a planing surface
without camber in the longitudinal direction is considered.

Let the aspect-ratio AR be defined as

2 -
AR = Span . Span

Wetted Planing Area ~ Mean Wetted Chord Length

For a high-aspect ratio planing surface, it is implied
that the maximum dimension in the z direction is much
greater than the maximum dimension in the cross-sections.
Then a small parameter € can be defined as the inverse of
high-aspect ratio:

1 Mean Wetted Chord Lengih

€ = =

AR Span

As aspect-ratio AR becomes larger and larger, the span
grows bigger and bigger if the mean wetted length is fizxed.
| At its limit as AR approaches infinity, the span approaches
infinity. For an infinite span the flow will be two
dimensional. This is exactly the lowest-order near-field
description. The characteristic length will be the chord
length at each section. On the other hand if & becomes
smaller and smaller, the scaie of mean wetted length becomes
smaller and smaller ij the span is fixed. At its limit

as € approaches zero; the planing surface shrinks to a line
and uniform flow is recovered. This is exactly the low-

est-order far-field description. The characteristic
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length will be the span. There are two different reference
length scales working at the same time. It suggests that a
singular perturbation method can be applied to solve this
problem.

In the present work, the method of matched asymptotic
expansions is applied to solve a high-aspect-ratio planing
surface problem. The full boundary-value problem is
decomposed into near-field and far-field boundary-value
problems. The first-order near-field problem with respect
to the small parameter € is found to be a plane irrotational-
flow problem. The solution is obtained by the hodograph
method. The first-order outer solution represents a
uniform stream. The second-order inner problem is shown
to be a plane irrotational-flow problem again. The
second-order outer problem is shown to be similar to the
lifting line problem. Following the matching principle28
as outlined by Van Dyke, unknown parameters in the near-
and far-field problem are determined. Finally, a unique
solution is obtained through matching of the free-surface
deformation. The depth of submergence c¢an thus be properly
defined. The anomaly in the Wagner's and Green's gravity-
free infinite depth solution is thus removed by the present
wcrk. Three dimensional effects are shown to provide a

height reference. Thus present theory is applicable for

heavy loading as well as light loadirg on the planing surface.




I1. FORMULATION OF THE PROBLEM

II. 1. Statement of the Problem

The problem treated here is a three dimensional flow
generated by a high-aspect-ratio planing surface gliding with
a constant speed U' at an arbitrary angle on the free surface
of an infinitely deep weightless fluid. The fluid is assumed
to be incompressible and inviscid and the flow irrotational.
Instead of a planing surface moving on calm water, a uniform
stream of speed U' at infinity in the directicn of positive
x-axis is superimposed. Then a steady motion is obtained.
Take the coordinate system with the origin on the undisturbed
free surface and choose the x-axis in the direction of the
uniform stream. The positive y-axis is taken vertically
upwards and the z-axis is perpendicular to the xy-plane as
shown in Figure 2.1.

Let the span be b' and the planing surface located
in the segment |z| < b'/2. Let the chord length of the
planing surface be £'(z'). The function &' (z') must be
continuous and have a continuous derivative, at the tip as
elsewhere; otherwise singularities will occur and the
region near the tips will need a special treatment.28
Let the angle of incidence be a, the aspect ratio of the
planing surface be AR, and the small parameter be €, which

is the inverse of the aspect ratio. Let the vertical




distance between the trailing edge and the undisturbed

free-surface level be h'(z'). To simplify the analysis,

it is assumed here that the trailing edge is a straight hori-

zontal line. This assumption implies that h' is independent

of z. Therefore the uncambered planing surface becomes a
planing plate. In Chapter 8, this restriction will be
relaxed so that the bottom of the planing surface can be
V-shaped or even curved in the spanwise direction.

Assume that the angle of incidence a, the depth of
submergence h' and the shape of the chord length distri-
bution 2'(z2') are given. The solution of the hydrodynamic

problem of the planing surface is tc be determined.
II. 2. Boundary Value Problem for the Planing Plate

The fluid is assumed to be ideal and the flow irrota-
tional. There exists a velocity potential ¢'(x',y',z2"')
which satisfies the Laplace c¢quation

(L) Vo' = 0 in the fluid region

Assume that the free surface deflection can be specified

by the equation

y' = n'(x',z') on the free surface Sg

e T T D R Sy
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The function n' is unknown; it is a part of the problem
to be solved.

There are two conditions to be satisfied on the free
suriace. Let the velocity be the positive gradient of
the velocity potential, q' = V¢', where q' is the veiocity
vector. The first condition is called the dynamic
boundary condition. It states that the pressure is constant
on the free surface, equal to the atmospheric pressure:

p' (x',n'(x',2'),2") = P ' on Sf

The Bernoulli equation gives

' P; 1 2
%n + %(¢;? + ¢§? + ¢;?) =57+t 3 u' )

where p! is the atmospheric pressure, p' is the local

pressure in the fluid, p' is the density of the fluid. An
assumption is made that no disturbance exists far upstream
at infinity. On the free surface, the Bernoulli equation

becomes:

)2 2 2
x + ¢yl + q>zl = Ul on Sf

The second condition on the free surface is called
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the kinematic boundary condition. It states that a
particle once in the free surface remains in the free

surface. Mathematically, it can be stated:

D - D 0 00 el e
pe—'S¢) = g lm'(x',2') -yl =0 on 8¢
where 5% denotes the substantial derivative. The above

equation gives:

] ' - ' ' ' =
(F2) X'nX' ¢Y| + ¢z|nz| 0 on sf,
Equations (Fl) and (F2) are two non-linear conditions to
be satisfied on an unknown boundary sf
Next, a body boundary condition must be satisfied.

A body surface might be defined by the equation

s' =s'(x',z') + Y' = 0
The kinematic boundary condition on the body wculd be
LS - 8l 4 0EL=0  ony'=-sx',2h).

x'"x! Yy

For the planing plate, for which:

o n ar b e ar
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s' =x' tan a + y' =0,
the body condition is :
(B) ¢;, sin a + ¢§, cos a =0 on the plate

In airfoil theory, a Kutta condition is applied to
give a finite velocity at the trailing edge. 1In the planing
problem, this condition requires that the flow separates
smoothly from the the trailing edge of the planing surface.
Finally, there is a radiation condition to be satisfied
to guarantee a unique solution. This condition states that
there is no disturbance far upstream.

The planing plate problem is thus mathematically

formulated. The governing equation is the Laplace equation
subject to two free-surface boundary conditions, a body
condition and a radiation condition.

It is more convenient to work on the problem by making
the variables and the equations dimensionless.

Let the span be normalized to be of length 2 and
located in the segment |z| < 1. And define the following

variables:

[ ]
b = g7y =2

) _ox! , ' , z!
X:¥02 = 5773 b“,72 b7/2




L ]

q = T (ulvlw = %‘l ';‘u ’ g‘c)
n' h' 2’
n=gT73 0 h—517—: 2=Eu7—2-

p=—Py . 4= iy

D'U'

The full boundary-value problem in dimensionless form

becomes :
(L) ¢xx + ¢yy + ¢zz = 0 in the fluid region (2.1)
(F1) 6.+ ¢y2 +6.2=1 ons, (2.2)
(F2) ¢xnx - ¢y + ¢zni =0 on Sf (2.3)
(B) ¢xsin a + ¢ycos a = 0 on plate (2.4)
(R) ¢x =1 ; ¢y = ¢z =0 as Xr~®, y+-o (2.5)

Now, consider the flow field far away from the planing
plate. There is an incident flow which, at infinity, is
uniform in the x~direction. In the absence of the bodv, the
velocity potential is x. As €+0, the body shrinks to a line

normal to the incident flow, so the first term in the far

e v e

wa
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tield description represents simply a uniform stream,upon
which a line of higher crder singularities is superimposed.
On the other hand, consider the flow field in the neigh-
borhood of the planing plate. The flow in the whole vicinity
of the plining surface can not be regarded as a small
perturbation of the uniform stream for arbitrary angle a

As aspect-ratio AR approaches infinity, the flow in the
near field acts as if ¢ is fixed and the scale of span b
approaches infinity at each section. In this sense, it is
similar to the flow of infinite span ard the flow field
is two dimensional to the lowest order. So the singular
perturbation method can be applied to reduce the original
complicated free-surface problem into two relatively
simpler problems. The outer solution is valid only far
away from the planing surface, while the inner solution
is valid only near the planing surface. An appriximate
solution, valid everywhere, in the form of a power series*
in ¢, will be obtained by calculating successive solutions

of the outer and inner problems and matching them according

to the matching principle:29

m-term inner expansion cf (n-term outer expansion)

= n~term outer expansion of (m-term inner expansion). (2.6)

* The power series contains "logarithmic" terms. Howeveri
log ¢ will be treated as O (1) as suggested by Van Dyke.
Otherwise the Van Dyke rule leads to contradictory results.
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Here m and n are any two integers. This matching is
necessary in order to obtain inner boundary conditions

for the outer solution and vice versa.

II. 3. The Far Field Boundary-Value Problem

Let x, y, z be the outer variables which correspond
to the natural variables. Let ¢ be the velocity potential
for the outer problem. The xz-plane is located on the
undisturbed free surface with origin located at the
intersection of the planing plate and the undisturbed free
surface, as shown in Figure 2.2. The outer problem
corresponds to the flow field far away from the plate.
There the detail of the planing plate and the Kutta
condition become meaningless, while the Laplace equation,
dynaric and kinematic free-surface conditions, and
radiation condition must still be satisfied. The boundary

value problem for the far field can thus be formulated as

following:
(L) S + ¢yy + ¢zz =0 in fluid (2.7)
2 2 2 _
(F1) ¢x + ¢y + ¢z =1 on Sf (2.8)

(F2) ¢, ng =~ o, + ¢,1n, =0 onS; (2.9)

(R) ¢, =1 ;i ¢,=¢, =0 as xr-=, y>-o (2.10)
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Next, assume that there exists an asymptotic expansion
valid in the far field:

N
¢(x,y,z) v I ¢n(x.y.z;e)

n=0 (2.11)
where ¢ .. = ofé )
as €+0 for fixed x,y,2z

Also assume the existence of a complementary asymptotic
expansion for the free-surface elevation
N

nvI n (x,z;e) (2.12)
n
n=0

where el = o(nn)

as e+0 for fixed x,z

Substitute equations (2.11) and (2.12) into equations

(2.7) - (2.10) to give:

(L) ¢0xx + ¢0yy + ¢Ozz + ¢1xx + ¢lyy + ¢lzz

+ . =0 (2.13)

* Poxx ¢2yy + ¢222 tee

2
(F1) ¢Ox2 + ¢0y2 * ¢Oz * 2¢0x¢lx e ¢0y ¢ly

2 2
+ 2¢Oz¢lz + ¢lx v & ¢0x ¢2x + ¢ly + 2¢0y¢2y

2
oy, * 2¢Oz¢lz+ 2¢lx¢2x + 2¢ly¢2y * 2¢lz¢22

+ . e e e e =1 on Sf (2.14)
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(F2) ¢Oxn0x - QOy + ¢0zn02 + ¢anlx + 4’lx"Ox - ¢ly

+ ¢Oznlz + ¢leOz + ¢lx"lx + ¢2x“0x + ¢'Ox M2x

- ¢2y + ¢Oz Nz ¥+ ¢1, M, * ¢2z Noz * cosl

on S (2.15)

(R) ¢0x + ¢lx + ¢2x + L.... =1

+.....=u

¢Oy + ¢ly + ¢2y as x+-«, y+-o (2,16)

¢0z + ¢lz + ¢2z + ceeee =0

Equations (2.13) - (2.16) represent the mathematical

expression for the outer boundary-value problem.

II. 4. The Near Field Boundary-Value Problem

In the neighborhkood of a high-aspect ratio planing
plate, the flow acts as if it is nearly two dimensional.
In order to investigate details of this flow field, one
thus shall have to become more and more nearsighted as
the limit is approached. Mathematically the x-and y-
coordinates have to be magnified in order to have flow

variables change on a reasonable scale. Let x, y, 2z




e i Wi A ST AR PRI i1 -

e

77

19

be the natural variables.
Let X, Y, Z be the magnified inner variauvles with

origin at the trailing edge, ¢ the inner velocity potential.

Then

X = X + thOt a , Y = ¥ ; h , z

z (2.17a)

as shown in Figure 2.3

Figure 2.3 Inner Limit |

Also define

=N - 2 (2.17b)
N=¢' L=¢

A physical quantity, such as velocity, should not be changed
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by magnified variables:

b = 0(¢x)
The inner problem is valid only in the neighborhood
of the planing plate. The radiation condition is lost.
However, the Laplace equation, dynamic and kinematic free-
surface conditions, body boundary condition ard the Kutta
condition must still be true. The boundary-value problem

for the near field can thus be formulated as follows:

(L) ¢xx + b+ € Opp = 0O in fluid (2.18)
2 2 2,2 _
(F2) L o6.N. - 6. + €dbN. =0 onS§
€ XX Y AR/ f (2.20)
(B) ¢x sin a + ¢Y cos a =0 on body (2.21)

(K) The flow separates smoothly from the trailing

edge

Nex:t assume the existence of the following asymptotic

series with respect to ¢
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N
TV ¢n(X.Y.Z;€)

n=0
where ¢n+1 o(ﬁn) ( )
as € *+ 0 for fixed X, Y, 2

N

N Vv IN X,Z:¢)
n

n=0

where N = o(N_)
n+l n (2.22b)

as € + 0 for fixed X, 2

Substitute equations (2.22a) and (2.22b) into equations
(2.18) - (2.21) to give:

(L) ¢ + ¢ + ¢ + ¢

3Y.x+ se s 0 o0

+9 + ¢ + ¢ + ¢

0YY 1YY 2YY ¥ aooo

3yy (2.23)

g = . i
4+ e (¢OZZ + lez + ¢ZZZ 0000 0 in fluid

2 2
ox t 2%x%1x t 2%0x%2x * %1x

2 2
0y + 2¢OY¢1Y + ¢1Y + 2¢0Y¢2Y + ..

2
12

(F1) ¢ + ceee

+ ¢

2,.2
+€ (¢OZ + 2% .9 + ¢

0z%1z + 20

oz ¢22+....) =]

on Sg (2.24)

(F2)

Ji

+ ¢ + ¢

(29xNox oxM1x * %1xNox 1xN1x

m

°0xN2x + eeee) = (¢0Y + ¢1Y + ¢2Y + ¢3Y +.

+ e(0gaNgy + P Nyp  + Oy NG, + Oy N,

ces)

e uE S A B ——

C ot e
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+ ;OZNZZ + .onc; = 0 (2.25)
(B) (¢0x + ¢1x + ¢2x 4+ ....)8in a + (°OY

+ ¢1Y + ¢2Y + ....Jcos a = 0 on body (2.26)

This is the non-linear near-field surface probliem.
Now, consider the lowest order of this inner problenm.

According to the definition cf asymptotic expansion, ¢1xx
is of higher order than QOXX in equation (2.23) and can be

discarded. Therefore the possible lowest-~order Laplace

equation is:

0XX (10’64 02z ~

However, according to the definition, ¢ is of the

0z2z

same order as ¢ and ¢ Finally, it gives:

0XX oYy

(L) ¢ + 9 =0 in fluid (2.27)

Similar argument leads to the following boundary condi-

tions.
2 2
(F1) Lo} + ¢ =1
0X (404 on sf (2.28)
(F2) QOXNOX - E¢OY =0 on Sf (2.29)




(B) G’OX sina + ¢

cos a 0 on body (2.30)

oy
This is the iowest-order inner boundary value problem,
which will be called the first-order inner prstlem throughout

the entire work.

(ai




ilII. FIRST-ORDER SOLUTION

II1. 1. First-Order Inner Solution:
The inner boundary-value problem was mathematically

formulated in the previous chapter and then was expanded in
an asymptotic series with respect to €. To the first

order the boundary value problem is:

(L) ¢0XX + ¢0YY =0 in fluid (3.1)
(F1)  og 0 + o5, 0 =1 on S, -
(F2) ¢0XN0X = EQOY =90 on Sf (3.3)
(B) ¢0x sin a + QOY cos a =0 on body (3.4)
{X) Kutta Condition

The governing diiferential equation 1s a two dimen-
sional Laplace equation at each section. The boundary
conditions are all two dimensional. Therefore, the first
order inner problem concerns a plane irrotational flow.
The dynamic boundary condition (Fl) states that the

magnitude of the velocity on the free-surface is constant

24
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and known. The body condition (B) states that the direction

of the flow on the body surface is known. This is a free
streamline problem and can be solved by the classical hodo-
graph method.

It is noted that 2 coordinate appears only implicitly
in this first-order inner problem. It wiil be shown in the
next chaptcer that the Z coordinate also appears only
implicitly in the second order inner problem. Therefore,
in order to stay with the conventional symbol, Z will be
defined as a complex va.iable 2=X+iY throuvih the whole
analysis.

Experiments30 indicate that near the planing surface
the flow shown by tests presents a true jet nr spray
character; i.e., at some distance ahead of the planing
body the water surface is practically undisturbed, while
immediately forward of the planing body the water is thrown
off in a spray. 1In the region behind the planing body,
there is no spray separating at the trailing edge at
large planing speeds; the water flows off smoothly from
the trailing edge.

From this experimental observation, the first-order
inner problem can be stated as following: An infinitely
long flat plate is held at an arbitrary angle a on the
free surface of an otherwise uniform stream of an infinitely

deep weightless fluid. The plate is of length L. The

PRSP

e —— ot A e
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origin 1s located at the trailing edge B which is at a
depth H from the undisturbed free surface. Y-axis is
vertically upwards, X-axis is in the direction of uniform
stream. The plate is AB. The flow comes from upstream
infinity and divides along the stagnation streamline which
branches off at the stagnation point C. Above this
streamline, the flow shoots off as a jet J. Below this
streamline, the flow separates smoothly from the trailing
edge B as shown in Figure 2.3. From equation (3.1) the
velocity potential ¢0(X,Y) is harmonic and its conjugate
?O(X,Y) is the stream function. Define the complex
potantial FO(Z):

FO(Z) = ¢0(X,Y) + ¥ (X,Y)

0

Let WO(Z) be the derivative of FO(Z) with respect
to Z:
dFO(Z}

WO(Z) = ——a-z— = d)OX - ’Lq)OY = U - 1V

where U0 and V0 are velocity components in the X and Y
directions, respectively. WO(Z) is called the complex
velocity. Both FO(Z) and WO(Z) are analytic functions.

The dynamic free-surface condition (Fl) gives:



(3.5)

The kinematic condition gives:

1% _ oy | Vo on S (3.6)
e dX ¢0X Uo £
The body condition gives:
v
-—.—o. = -tan a (3.7)
Yo

The first-order inner problem is thus expressed in
natural variables. This problem will be transformed onto
the lower half of the auxiliary g-plane as shown in Figure
3.2. The problem is then sclved in the rz-plane and finally
the solution is transformed back to the physical plane by
the inversion formula.

Let the potential function ¢, be zero at C and the

0
dividing streamline be Wo=0. Consider the Fo—plane shown

in Figure 3.1. 1IJ is the upstream free surface. If

a, is the breadth of the jet at a great distance expressed
! in the outer variables, then the breadth in inner variables is
=
a
i 60 = —% . Along IJ, the stream function WO is
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The polygon in the Fo-plane can now be transformed
onto the lower half of r-plane. Let A, B ccrrespond to
¢ = =1, +1 respectively. The chcrd length is represented
by the segment |f] < 1 on the real axis n = 0, where
; =%+ n., Let J, C then be mapped onto ¢ = -bo,co.
The free surface is thus mapped onto the real axis too.
The diagram of the r-plane is shown in Figure 3.1. The

Schwarz-Christoffel transformation gives:

Integration gives:

50 ;+b0
FO(C) = m [C = Co o (bo+co) 109"‘5‘6‘;_?01 (3-8)

This is Green's solution./ {See Milne-Thomson32)

Next, define the mapping function Ho(c)

dr ) r-c

0 0 0 (3.9)
H . (z) = = c
0 dg n(b0+c0) c+b0
Then
dF
_ 0 _ dg

From equation (3.10), integration gives
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N .
zZ = . m dg (3.11)

The origin is located at the trailing edge to give the
lower limit of the integral to be 1. The equation (3.11)
relates the r-plane and the physical plane. The inner
solution found in the f-plane will be transformed back
to the physical plane by the equation (3.11), which is
called the inversion formula.

The equations (3.5), (3.6), and (3.7) state that the
flow is bounded by a straight rigid boundary (planing
surface) and a curvilinear free streamline (free surface).
The complete boundary can be transformed into a simple

closed polygon by a Kirchhoff function.

Define the complex variable Q, to be

Q0 = - log(Wo) = T4 * i@o (3.12a)

Let g be the speed in the flow field. Then

Qo = - log g9 - Ziarg W0 (3.12b)

Equations (3.12a) and (3.12b) give:
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On the free surface, g=1, which gives:

=21, = 0 on Sf (3.13a)

Gy = - arg Wy = -a on CB (3.13b)

6, =7 - a on AC

Next, express these boundary conditions on the real

axis, n=0, of the ¢-plane. Equation (3.13) becomes:

1 -e2%() -9 (n=0,|£|>1)
(3.14)
0 (6 = (T (n=0 ¢, <£<1)
(n=0 ,'1<E<Co)

It is noted that the kinematic free-surface condition is
automatically satisfied where the free surface on the
physical plane is mapped onto the real axis in the

segments |£| > 1 of the g-plane. Equation (3.14) gives:

£) =0 {n=0, |E|>1)
So

I
[

(n=0,|£]|>1) (3.15a)
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And -a (n=0,cy<€<1)

0 T - a (n=0,-1<g<c,)  (3-15P)

At the stagnation point

Wo( g ) =0 (3.15c¢)

The Wo-plane is shown in Figure 3.2, The entire fluid region

is mapped by WO(Z(Q)) into the region bounded by a unit half-

v g RV g

circle and its diameter. The diameter is the image of the
planing surface, on which the direction of the velocity
vector is known, and the semi-circle is the image of the
entire free surface, on which the magnitude of the velocity
vector is known. Now, map the wo-plane onto the lower half

of the i-plane by either of the following equivalent forms:

£=Cq

- W, (2(2)) = e®

l-coc+i/Ql-c02)(C2-l)

. 2 2
_ o 1-c0g-z¢Q1-c0 ) (z2-1)

o]
0 (3.16)

e

1
/1-z% is defined as the branch of (1-z%) 72 with its

branch cut on the real g-axis between g=+1,-1.

Equations (3.9), (3.11) and (3.16) give:
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Figure 3

B I o

.1 Complex Potential Fo-Plane

-V

Figure 3,3

z-Plane
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-

503-"“ {,+DG
(7)) = ;TEEIE;T l-co(€“1)+(l+c0b0)logEE;T

+ i/l—co2 /cz-l - iboll-co2 log (z+v/7"-1)

P p
14byc-/tby*-1) (c%-1)

}
L+b, (3.17)

= i/g62-1 J&-coi log

This is the inversion formula which gives 2 as a function
of z.

There are three parameters ag - b0 . and o at each
section, none of which has been determined yet aside from
the facts that

legl <1 by >1

Equations (3.8) and (3.17) provide 2 complete first-
order inner solution. The three unknown parameters will

be determined from matching %o the far field problem.

III. 2. First-Order Outer Solution

Consider the flow field at a great distance from the
planing surface, mathematically, a distance of order unity
with respect to €. The boundary-value problem has been
formulated in section IX. 3. With the same kind of argument

as given in section 1I.4, the first approximation for the

outer problem is
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(L) ‘oxx * Yoy * Y02z = © in fluid  (3.18)
(FL) 95 2 + °0y2 + 05,2 =1 on S, (3.19)
{F2) o°xn°x = ¢0y + ¢Oz"02 =0 on Sf (3.20)
(®) Pox =17 gy = 9 =0 ;::: (3.21)

The free-surface boundary conditions (F1l) and (F2)
are applied on S¢ which is unknown and is a part of the
problem to be solved. To avoid this difficulty, it is
assumed that Taylor series expansions exist for ¢° at

the reighborhood of Ng* From (2.12), S¢ is

Y= n(xlz) = no + nl + Tl2+ LCI )

It is then assumed, for example, that:

<b0x(x,n(x,2).2) = %x(x,no.Z) + (n1+n2+ --.)¢0xy(xm°.2)

2
(nl+n2+...)

2 ¢Oxyy

+

(x,no,z) A

However, it will be shown in the later part of this
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section that the first term of the outer solution represents
a uniform stream. It gives the value of ng to be zero.
Therefore, it is assumed here that no=0. To the first-~
order the free-surface conditions can be applied on the

undisturbed free surface y=0 to give:

2 2

(FL) 6o+ 6g,

+ ¢022 =1 on y=0 (3.22)

= = {

(F2) ¢0y 0 on y=0 (3.23)
For a high-aspect ratio planing surface, the outer

problem corresponds to a planing surface of fixed span

and vanishingly small chord length. As AR + «, the planing

surface shrinks to a line. There is no disturbance far

upstream. Therefore, it is plausible to assume that the
3 outer problem can be linearized. This is confirmed in
experiments30 which show that at a small distance ahead
of the planing body the water surface is practically
undisturbed.

This physical argument shows that the first order

solution is a uniform stream.
¢0(x, Y, 2) =X (3.24)

Mathematically, it can be shown that the equation (3.2%1)
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satisfies all the first-order equations, (3.18) - (3.23)

trivially.

III. 3. First-Order Matching

In the inner problem, the radiation condition is not
considered. On the other hand, the bcdy condition is not
considered for the far field solution. These missing
conditions can be recovered through the matching process,
leading to a unified solution valid in the whole fluid

region.

Let m=1 and n=1 in the equation (2.6);
l-term inner expansion of (l-term cuter expansion)
= l-term cuter expansion of (l-term inner expansion)
(3.25)
Each of these will now be obtained.

Consider the inversion formula. As ¢ + «, equation

(3.17) gives:

59

7 NV m—— [
n(b0+c0)

as |2| and |z] » = (3.26)

This equation states that 2 and ¢ correspond to within
a real scale factor at large distances from the planing
surface. This has a significant meaning. In order to

obtain the outer limit of the inner solution, one has to

e
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work with a large value of Z which corresponds to the large
value of 7 as expressed in (3.26).

Let

60
B9 = FTBgrey) oditl

Far away from the planing surface, which corresponds to the
outer limit cf the inner problem, equation (3.17) gives:

(see Appendix A)

Z " Aoe‘*“{(-co+i/1-coz)g + 1ogc(1+cobo-ibo¢&-coz)

- i/l-coz(bologz + /goz-llog(bo~/go!-l)) - <

- (l+cgby) log (1+by) } + 0(%) (3.28a)

Recall that log r is treated as O(l) as r approaches a
large value. To the first term, this expression can be
inverted, as follows:

10

L = 2 Z + O0(log Z) (3.28b)
0 2
Ao(-c0+z/&-co )

Now consider the one-term inner expansion. Equation

(3.8) gives:

d>0 = Re {W[E = C0 = (b0+C0)lOg—ba;_—c—o-]}

R Py

T O qdn A W e @
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Far away from the planing surface, if (3.28) is used, this

becomes:

>
<

0 (-cocos a + Jl-cozsin a)X + (cosin a + /l-cozcos a)Y

+ 0(log X) for large |z|

In the outer variables, it gives

#g™ (= spc08 a + /l-cozsin a)§19§95—gh

+ (cosin a + /l-cozcos a)XEHL
+ 0(log xfhgot a

where h=0() = 0(c)

The one-term outer limit of the one-term inner solution is

1 A 2 . .
¢0 e (¢ - cyCos +v/1 ¢, sin a)x + (c051n a
+v’1-c0 cos a)y] (3.29)

Next consider the inner limit of the outer solution.

The one-term outer solution is

bn (%, ¥y, 2) v X

0

In terms of inner variables, this becomes:
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¢0 v £X - eHcot a

This is the one-term inner expansion of the one-term outer
solution. To be matched to the expression in (3.29), it
must be expressed in the same variables. Thus the one-term
inner expansion of the one-term outer expansion is:
¢° (x, vy, 2) v x (3.30)
Equations (3.25), (3.29) and (3.30) give:

= = COS O (3.31)

This was known to Green;7 however he assumed it to be true.

—e -
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IV. SECOND-ORDER SOLUTION

IV. 1. Second-Order Outer Solution
The boundary-value problem for the second-order outer

solution can be obtained from equetions (2.13) - (2.16)

(L) - ¢1xx + ¢1YY + ¢lzz =0 in fluid (4.1)

Fl) 205,07, + Sgyf1y ¥ 9029120 * 201 ($g4y%0x

+ ¢0yy¢0y + ¢Ozy¢02) =0 on y=0 (4.2)

(F2)  doxMx * ®1xTox = %1yt ®0zM1z * %122

* N1%oxyox T Mfoyy ¥ M%0zy"0z = °
on y=0 (4.3)
‘R ik T 07ty T 20 TR (4.4)

é If the equation (3.24) is used, the free-surface

boundary conditions become

(F1') ¢1x (x,y,2) =0 on y=0 (4.2'
(F2')  doxMix + %1xM0x = ®1y ¥ %120z = O
on y=0 (4.3")
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The equations (4.1), (4.2'), (4.3') and (4.4) constitute
the second order boundary value problem.

The equation (4.2') states that the velocity potential
¢; can be continued analytically into the upper half space as
an odd function with respect to y=0, The equation {4.1)
states that the potential ¢l is a harmonic function. Up-
stream of the planing surface, the potential ¢1 can be

required to satisfy:

¢, (x,0,2) =0 on y=0, x<0, (4.5)

In this domain, ¢1 must be continuous at y=0. The function

¢1 is thus defined in the entire space and has the following

property

¢1 (x, Y, z) = - ¢1 (x, -y, z) (4.6)

It is this result which permits the outer problem of
the planing surface to be reduced to an equivalent airfoil
problem. Downstream of the planing surface, equation (4.2')
then becomes just the usual downstream condition for
continuity of pressure across a vortex wake. The body
condition is replaced by requiring the outer expansion to
match with the inner problem. The line of singularities

is now located on the undisturbed free surface, and the

ERYPasN———.
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vortex sheet is assumed to lie on the xz-plare which
corresponds to the free surface at upstream infinity.

The planing problem will thus be solved as if there
were a vortex wake. Actually, there is none; instead there
is a free~-surface. It is simply that the outer problem of
the planing surface is mathematically equivalent to a
well-studied airfoil probiem. Concepts such as circulation

have no place in the planing problem.25

The fluid region
is simply connected and the potential function is single
valued. There is no circulation. Nevertheless, some of
the terms and symbols of aerodynamics will be used in
solving the problem.

The planing surface can be represented by a line of
singularities at x=0 along the z-axis in the unbounded
fluid as € approaches zero. The strength of these
singularities is still unknown. Since there exists a
lift on the body, one must provide for the existence of
singularities in the flow behind the body. These are
the usual wake vortices, which can be represented in
terms of a dipole distribution of density y(x,z) in th=
xz-plane, with doublet axes normal to y=0 plane.

The wake now is a surface of discontinuity; therefore
the distribution of doublets must be extended to infinity
over the wake surface W as well as over the planing
surface S. The span of the planing surface is located

in the segment between z=-1,+l. The velocity potential ¢

has the following form9
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1 o0
; 1
Py (x,¥,2) = —__j QJ d¢ VARLS)
1 1 337
T -1 Jo l(x-€)2+y2+(z-c) ]3

1
. lf yu(C)dC + 1 xX(c)de
L] [x +y +(z ) ]3/2 g 1[x2+y2+(z-€)2]3/2

{4.7)

It can be shown that the equation (4.7) satisfies the
Laplace equation and all the boundary conditions (4.1) -
(4.4). The first integral represents a plane sheet of
dipoles extending to infinity downstream. As shown in
Appendix B, the dipole density is a function of the z
variable only, y=yY(z). The second and third integrals
represent discrete lines of vertical and horizontal dipoles,
respectively. Higher order singularities, such as
quadripoles, etc., need not be considered here for the
second-order approximation. Sources have been omitted, on
the assumption that there is no generation of fluid in the

body.

The first integral can be integrated with respect to ¢

to give

1
(Z) X
6, (x,y,2) = 4% Af [1+ 1dz;
1 A f_1y2+(z-c)2 [x2ty2+ (z-) 2] 1/ 2

JJ_(Q)GC
1[x sy24(z-0) 23/ 2

1
. _gj{' () de
L I PR R (4.8)
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The functions y(z), A(z), and u(z) can be expanded into

series which are asymptotically valid as € + 0

N
y(z) ~ E Y, (2i€) Yn+1'-'0(Yn)
n=1l
as ¢ + 0
N
u(z) NRE un(z:s) un+1=0(un)
- as € + 0
N
A(z) ~ nil An(z;e) An+l=o(kn)
as € + 0 (4.9)

In the outer problem, as aspect-ratio AR approaches
infinity, a uniform stream is recovered, and the dipole

density eventually vanishes. Therefore, one has

71(2) = o (1)
ul(z) = o (1)
Al(z) =0 (1) (4.10)

Therefore, the two-term outer solution is

Yl(C)

1
¢ + by VX + [1 + X ldr
0 0 T% -1 Y2+(2-C)2 [x2+y2+(z-c)2]177
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1
u,(2)
1
M ‘Iﬁ 2,372 de

1 [x2+y2+(z-c)

1 Ay (L)
t ) 21 5372 9¢
-1 [x“+y“+(2z-2)7] / (4.11)

IV. 2. Intermediate Step Matching

Let m= 1 and n=2 in the equation (2.6) to give:

2-t outer expansion of (l-t inner expansion)

= 1-t inner expansion of {2-t outer expansion)
(4.12)

In order to find the former, procede as follows:

For large ;, the inversion formula (3.17) gives a two-term

expansion:
-ia
A Aoc + Ao(e - bo) logg
+ A e-ia(M - IR,.) + 0(l) for large g (4.13a)
0 0 0 z g .
where
M0 =Cy - (1+boco) log(l+b0)
R, = b,/1-c log 2 + /g 2-1 /&-c 2 log (b -Vg -1)
0 0 0 0 0 0 0
1A b ]
A\

3b)

Next, express [ in terms of Z to give
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- 1'.120)e"1'(x

- z L
bo) log A (M + O(Z)

'.—.-—Z—_c(e
A )

0 0

(4.13c)

one-term inner solution is given by equation (3.8). Far

away from the planing surface, equation (3.8) gives:

Z -ia Z -3 .
to v fe {AO{Xb - (e7** - bo) logXb - e ta(Mo-zRo)
Z
-3 " (b0+co) 10950 + (bo+co) log(b0+co)
+ 0()1}

where Ao, Mo, and RO are all real constants. Next take the

real part for large value of X to give

. -1y 1
A~ X - A.sina.tan X Go + O(i)

% 0

The two-term outer limit of the one-term inner expansion

£ is thus

sina-tan-l % - G (4.14a)

¢. v X - A 0

0 0

where

G0 = AO[Mocos o - R051nu - coso

- (by-cosa) log (by-cosa)] (4.14b)

W TR

e M s ragey gt

Cmpr

. gt g e e

20 SLIRS ULONDASRIDIA B "7 APPSR IS S OMETI I L R




47

Take outer variables

xthcota _ . -1 y-h
@0 n, —_— Ao silnatan §¢§EBEE - Go

1 . -1
% =( x ~ eA,sina tan ~ £ + h cota - ¢G,)
€ 0 X 0

A constant Ko, which is independent of space coordinates,
added or subtracted from a velocity potential would not
violate the conditions prescirbed for @0 (Laplace
equation and boundary conditions). 3o the two-term cuter
expansion of the one~term inner expansion is:

o o 1

l o A cing ¢ tan 1.X - cc -
0 = (x cA051nu tan x + h cota eGo ng)

(4.15)

The two-term outer expansion is given in (4.11).
To take the inner limit, this solution must be evaluated
near the line of singularifies. Then the integrals in
(4.11) become divergent integrals. This difficulty is

resolved by integration by part to give (see Appendix C)

1
) Z gy
1 -1 1y Pyt (2= 2 M
do + 01V X ﬁ-f (tan E-l-,'c+ tan - = Yz d¢

du

b o= Y (z-%) dl
am x2+yz . [x2+yz+(z_c)2]1/z z

dg

B

L bt e
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e et

1
¢l X zg) |
T o N ke A (4.16)

The strength of singularities is zero outside the planing

LT et s e 2

body, which gives:

Yl(il) =0 ; ul(il) =0 ; Al(il) =0 ;
Take inner variables ;
o+ ¢. v (eX -eH cot a) - l—(eY +¢cH) ifil QE— ;
0" "1 ar dz z-t ]
Yl(z) -1 eY+eH -1 I
- 3 tan oot @
(eY+eH) U, (2) + (eX-eHcot a) i, (2)
1 j 1 1
+ ﬁ 3 2L + O(EYl)
(eX-eHcot a)” + (eY+ecH)
(4.17)

The Cauchy Principal value is to be taken for the integral.
The order of magnitude of Yl(z) with respect to € is

not known yet. However, one does know that Yl(z) = o(l).

Therefore, the one-term inner expansion of the two-term

outer expansion is:

Y4 (2)
‘ ) _ N -1 £Y+eH
¢0+¢lm (eX-eHcot a) - 75~ tan (ex-eHcot a)

(ey+eH)ul(Z) + (eY-cHcot a)Al(z)

1
+ =
2 (eX-eHcot a)2 + (eY+€H)2

e s T T
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In the outer variables, this is :

Yl(z)

gt & v X = =ty tan_l(i-) + Ly (2) +550 (2)  (4.18)

211

From the equations (4.12), (4.15) and (4.18), matching gives

yl(z) ZneA051n o

ul(z) =0
Al(z) =0
G =0 (4.19)

0 + Ko - h cot ¢

The discrete lines of wvertical and horizontal dipoles ul(z)

and Al(z) are of higher-order than that of yl(z). So

O(¢)

Yl(Z)
ul(z) = Al(z) = o(¢)

¢1(anIz) = O(E) (4.20)

IV. 3. Second-Order Inner Solution

From the first-order outer solution, ®0=O(%) as
expected. However, the definition of the asymptotic
expansion only implies that ®1=o(¢0). The exact order of
magnitude of ¢1 is still unknown. Therefore, 82¢OZZ term
must be included in the Laplace equation.
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Next, use the same argument given in section 1I. 4.
The possible second-order problems obtazined from the

equations (2.22) - {2.26) are included ‘n the following:

(L) °1xx + 01!? + € ’ozz ~ 0 (4.21a)
(Pl 200 0, + 200 &+ e?e,,2 v 0 (4.21b)
(F2) 0 Ny 4+ &) No -0 + €2°oz"0z ~0 (4.21c)
(B) ¢1xsin a + Qchos a=20 (4.214)

Now, the order of ¢1 will be estimated. There are
two possible ways to do this. One is to assigh every
possible order of magnitude to 01, then try to show that
each assigned order of magnitude, except one, gives rise
to a contradition among the Laplace equation and all the
available boundary conditions. The exceptional case
which is acceptable for each equation is thus the
possible order of magnitude for ¢1. The second approach
is to consider all the non-homogeneous equations. Determine
the order of magnitude of non-homogeneous parts. The
lowest one will be the possible order of ¢1. The nice
thing about the method of matched expansions is that, if

the order of magnitude is not correctly estimated, it




S1

will show up autamatically in the later part during
the matching performance. The second method will be
used here to estimate ¢1.

The available non-homcgeneous equations are

0(8,) 0(e.) 0(e)
1 1 0
’1xx + QIYY = - ¢ ¢ozz (4. z2a)
® ¢
oy  o=h o
2
20,8,y + 200,01, = €24, (4.22b)
6 N..+ 6. .N..~ eb. = -c20 N
oxN1x 1xMox 1Y 0zVoz (4.22¢)
Equation (4.17) gives:
1-T. I. E. of 2-T. 0. E. ~ O(eX) (4.224)
and
2-T. I. E. of 2-T. 0. E. ~ 0(eX) + O(e?y) (4.22¢)

The first term in the right hand side of (4.22e) is
matched to inner solution ¢0 and the second term is

matched to Ql' Therefore, the equation (4.22e) gives

¢, ~ 0(6@0) (4.22f)

1
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Ll

The kinematic free-surface condition (4.22c) will be
used to determire the free-surface deflection, therefore, it
can only be used to determine the order of Nl. From
(4.22a), (4.22b), and (4.22f), the lowest order for ¢1 is

¢, = 0(1) (4.23)

1

If equation (4.23) is used, the second-order inner

problem becomes

(L) ¢1xx T 0 in fluid (4.24a)
(F1) 2(¢0X¢1x + ¢0Y¢1Y) =0 on S¢ (4.24b)
(F2) ¢0XN1X + leNox = €¢1Y =0 on Sf (4.24c)
(B) ¢1xsin o + ¢1Ycos a =20 on body (4.244)

Instead of this boundary-value problem being solved
directly, it will be combined with the first-order inner
problem. The new boundary-value problem will be shown
to have exactly the same forms as the first-order inner

problem, and the solution obtained in the previous
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chapter can thus bz carried over directly to give the
second-order inner solution.
Consider the new boundary-valve problem in which

first-order and second-order conditions are added:

+ ¢ + ¢ + d =9

0XXx oYYy 1XX 1Yy

in fluig (4-253)

+ ¢, .0..) =1

2 2
¢ + ¢ + 2(¢ ov®1y

0Xx 14 (4.25b)

OXQIX on Sf

PoxMox ~ €%y * %oxix * ®1xMNox ~ €%y = O (4.25¢)

on Sf

¢oxsin o + ¢0Ycos o + ¢lxsin a + ¢1Ycos a =0 (4.254d)
on body

2 2
and QlY

are added to the left side of equation (4.25b), the effect

Now, consider the equation {4.25b). If ¢1x

will not be felt until the third approximation or higher.

Therefore, without loss of accuracy to the second-order

2 2

approximation, ¢1X and ¢]Y can be added onto (4.25b); the

same argument is applied on (4.25b) and (4.25c). One obtains:

(L) Opg ¥ Oyy =0 in fluig (4-26a)
*2 . 872 2 2
(F1) 0.2 + 0, = on s, (4.26b)

L Ip— . Dpara- & o, et ey 2
0, "o B o
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*
- €é

* *

(F2j ¢x Nx Y = o on sf (4.262)
* [

(3) ¢xsin a + OYcos « =0 on body (4.264)
1

where ¢ = ¢o + ¢1
* ——
N =Not N, (4.27)

This is the new boundary-value problem. The governing
differential equation is the two dimensional Laplace equation.
All the boundary conditions are two dimensional. Therefore,
the solution represents a plane irrotational flow. The method
developed in the first-order inner solution can be applied
directly to this new problem. Once Q* is determined, the
second-order potential ¢1 can be obtained easily.

In the first-order problem, ags b0 and C represent the
jet thickness, jet directior and the location of stagnation
point on the r-plane respectively. Now due to the three
dimensional effect, these values will be changed by a small
amount.

Let a, b, and ¢ represent true values, assume the exist-

ence of asymptotic expansions for a, b, and ¢

N
a v §0 2 an+1=c(an)

n
26 50 (4.28a)
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N
b '\‘ngo bn bn+1=°(bn)
as ¢+0 (4.28b)
N
¢ anO cn cn+1=°(cn)
as e~»0 (4.28c)

F-or the new boundary-value problem ¢?, let

a =a0+a1
*
b =b, + b,
*
C =¢C+c (4.29)

*® *
Since ¢ is a harmonic function, ‘ts conjugate, ¥ , exists.

*
Let the analytic function F be the complex potential
* * *
F (z) = FO(Z) + Fl(Z) = ¢ (X,Y) + 1Y (X,Y) (4.30)
Use the same techniques as given in section III. 1.

*
Map the F -plane onto the lower half of ¢-plane as shown in

figures 3.1 and 3.2 to give:

* *
* * * *
F'(2) = —S— £ - " - b'+c") log £ (4.31)
m(b +c ) b +c

*
Next, define the new mapping function to be H (). Then the
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inversion formula is:

L
L W (Z(z') (4.32)

*
where W (Z) is the complex velccity.

%
Next, define the Kirchhoff function Q :

* *

Q =Q, + 0 = (1541,) + 1(0;+0,) = - log W (4.33)

Then on the free surface it gives:

1 - e 2(1g*tTy) = g on S, (4.34a)

On the body:

T - 0 on AC (4.34b)

D
+
(o]
—
[}

Now, map these boundaries onto the real axis, n=0, of the

t-plane. The conditions become:

1 - e-Z(TO(g) + Tl(g)) =0 (n:O,I€|>l) (4.353)
-a (n=0.c0+cl »<1)
9 + &) ={n-a (ﬂ=0.'l<€<co+cl)

(4.35b)

i
x
E
i
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Equation (4.35) gives:

*
L

ia

g - (co+cl)

(2(z)) = e

Then the inversion formula gives:

A

Y2

1 - (cg+cy)e + i/ﬁl—(c0+c1) 1(z°-1)

* -1a * * & *
=8¢  (-c"(z-1) + (a+c’D)) log HF-
(b +c ) b+l

v A2 /201 - b e ? 1og (z+/3-1)
* *2 2
- i 2-1/1-c 2 1og LR E = “Qii'l"c 21y (4.37)
T+

Equations (4.31) and (4.37) provide a complete second-order

inner

IV. 4. Second Order Matching

Let m=2 and n=2 in (2.6), giving:

For large [,

where

solution.

Z-T. Oc E- Of (Z-T- I- Ec)

= 2~T- I- Eo Of (Z-Tc O. E- )

c

- ; 1 -
Z = (A0+A1+¢A0§m)c + Ao (e

-iq .
+ A e (M0 - zRo)

S

0
1

10

60(b1+c1)

A

1 ﬂ(b0+c0)

2
ﬂ(b0+c0)

(4.38)

(4.37) gives two-term expression.

- by) log ¢

(4.39a)

(4.39b)

A4 4o s - g

[rrpe———"

N i At e e

Y T Tt O S A L i

e b oy, oy

o
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and AO, MO , and R0 are defined in (41.3Db).

Next, express 7 in terms of Z to two terms:

A c .
2 yA . 1 -1Q 2
Ao Ao Ao sin a 0 Ao

n—ia y I
+ BAge TU(IR) - My) (4.39¢)

Substitute (4.13b), (4.29), and (4.39b) into (4.3%i) to give:

8, + 00 Re ((A4A)[E - Eo(el 4 sl )
0 1 e 0 A1 Ao Ao Ao 5in a

-ta y/ . -ia -1q,
(e bO) lOg-—A—('; ‘LROE Moe ]

4
- (co+cl) - (b0+b1+°o+°1) 1og-xg

1
+ (bg+cytby+c,) log (b0+b1+c0+c1)} + 0(3)
(4.40)

Expressed in terms of outer variables, then fhe two-term outer

expansion of the two-term inner expansion is

c
1 _ c -ly . _ _
@o + le ry (x + sy €EAgsin atan il hcot o eGo eKO}

(4.41)

Now consider the inner limit of the outer solution. The
two-term outer solution is given in eguation (4.16). It is
assumed that the derivative of yl(z) with respect to the
space coordinate z is the same order of magnitude as yl(z).
Then the two-term inner expansion of the two-term outer

expansion is:
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Y, (2} 1dv
_ 1 -ly_Y. i dg
%t 9 VX -y tan " - &1 aT =%
@ g
v 1 - (4.42)
X +Y
From (4.38), (4.41) and (4.42), matching gives
d !
c. = - sin a le dc
1 4n ar  z-g (4.43)
-1
ul(z) = Allz) =0 (4.44)

The equation (4.44) states that ul(z) and Al(z) are of

higher order. Therefore:

ul(z) = Al(z) = o(e) (4.45)

From (4.43), 21 depends on the rate of change of yl(z)
with respect to the spanwise variable. To the first order,
equation (3.31) gives

- -1,
a = cos " co)

Now the hydrodynamic angle of attack oy will be

. -1._. _
ay = cos ( o cl)

Therefore, ¢ represents the deviation of O from a.

So c, represents a "downwash", as it is called in aerodynamics.
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V. FREE-SURFACE MATCHING

V. I, Introduction

The planing-surface problem is distinguished from the
airfoil problem by the presence of a free-surface. 1In Green's
classic two dimensional problem of a plate gliding on the
surface of a gravity-free, infinitely deep fluid, the non-
linear free-surface problem can be solved exactly. However,
Green's solution exhibite an anomaly. The free-surface

elevation is given by
y v - log |x]| as |x| » (5.1)

Thus far away from the gliding plate, the free-surfaée drops
off logarithmically to -«». The location of the gliding plate
can not be prescribed and his solution is not unique.

The present chapter will show that the anomaly exhibited
in this classic solution is just part of a proper near-field
expansion of the complete solution which includes three
dimensional effects. An inner expansion does not necessarily
satisfy the obvious condition§ at infinity; it must only
match some outer expansion in a proper way. A far-field free-
surface expansion will be derived and matched with this inner
expansion. Through this free surface matching, the height of
the planing surface is properly defined. The depth of sub-

mergence can thus be prescribed and the solution becomes unique.

60
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V. 2. First-Order Free-Surface Matching

A. Near-Pield Free-Surface Solution

The free surface and planing plate on the physical plane

are mapped onto the real axis of the auxiliary complex r-plane.
The inversion formula (3.17) gives the relationship between
the physical Z-plane and the r-plane. To describe the free~
surface elevation, 1et>n=0 and ¢=f on the equation (3.17). fThe
image of the free surface (n=0,|£|>1) in the ;-plane can now

be transformed back to the Z-plane:

omen ,
Z = 1 W dE' = X(E) + Z1Y(E) (5.2)

X(E) and Y(E) are the coordinates of a point in the free surface.

Far away from the planing surface, the equation (5.2) gives:

Z=X+1iY¥ = A°{ £ + (e'ia-bo) log £ + e'ia(Mo- iRo)l+ oe%)
(5.3)

Ay, Mo, and R, are defined in (4.13b). The leading edge is

0
mapped onto Z=-1 and the jet onto §=-b°. Therefore, the up-

stream free surface corresponds to

£ < -bo < -1 (5.4)

log £ = log |&] - wi (5.5)

Separate the real and imaginary parts in (5.3) and eliminate
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the parameter £ to give :

Y - Agsina log!x| + Aylsin a log Ay - w(cos a -b,)

- Mosin a - Rocos a] + 0(logl§l) (5.6)

This is the free-surface elevation far upstream and downstream

from the planing surface. As X + i», the free-surface deflection

becomes Y + ~», This anomaly is also observed in Wagner's and

Green's two dimensional solutions. However, it will be shown
in the present work that the equation (5.6) is just a proper
inner description.

B. Far-Field Free-Surface Solution

Equation (3.20) gives

¢Oxn0x - ¢Oy * ¢02“02 =0 on y=0 (5.7

If (3.24) is used, equation (5.8) beccmes

Nox
Integration gives
ng = D(z) (5.8)

where D is function of z only. However (3.24) represents a
uniform stream and, to the same order of magnitude, the free-
surface will correspond to the undisturbed free-surface elevation.

This gives D=0. So

Ng = 0 {5.9)
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This will be called the "one-term expansion” of the free-surface
elevation.
C. First-Order Free-Surface Matching

Equation (3.29) gives

€dy v ( -Ccycos a + /l-cozsin a)x + (cosin a+/1-cozcos a)y

v x , as |z]| + = (5.10)

where Co = - CO8 a is used. This is the one-term outer expansion
of the one-term inner expansion of the velocity potential, which
corresponds to a uniform stream at its outer limit. Par away

the free-surface can thus be represented by
Ny, = 0 on S¢ (5.11)

This is the one-term outer expansion of the one-term inner
expansion of the free-surface elevation.
From (5.9), take inner variables to obtain one-term

expression and then converted back to outer variables to give
Ng = 0 (5.12)

This is the one-term inner expansion of the one-term outer
expansion.

Equations (5.12) and (5.13) agree with the matching
principle (2.6). The first-order free-surface matching does
not provide additional information; in a sense, it is trivial.
Nevertheless this matching does establish the relationship

so that the higher-order free-surface expansions will follow
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the matching principle.

V. 3. Second-Order Outer Free-Surface Solution

Equation (4.3') gives“the kinematic free-surface condition:

¢0x"1x M lenOx_ ¢ly + ¢lz"02 = 0 on y=0 B0l
If (3.24) and (5.9) are used, one obtains:
Ny = ¢1Y =0 ~ y=0 (5.14)
Integration with respect to x gives
X
"1 =f ¢1Y (¢, 0, z)dg (5.15)

The lower limit is taken to be -= to coincide with the

; radiation condition. In appendix D, it is shown that

: ' 1
dy, (t) [z, (.2
. 61, (x:0,2) = - %i{- L L2420 gp  (5.16)

1 dg IZ'C T x(2z-7)

where the Cauchy principal value is taken. Substitute (5.16)

into (5.15) and change the order of integration to give

1
dy, () —
=-1[ . 1'x+x+(z-c)
1

T A T

| i1 an dz z-C"'
g - |z-z|log |z-2]+ - *+(z-t) i]dc (5.17)

The two-term outer solution is thus

b
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cl
1 le(C) 1

o * M =~ 7= 0 ac pra [x+/x2+(z-c)2
- |z-z| log|Jz-Cl+~/x2+(z-c)2

X ldg (5.18)
V. 4. Intermediate Free-Surface Matching
Let m=1 and n=2 in (2.6) to give
l-T- I- E- Of (2-'1‘. 0. Eo)
= 2-To Oo Eo Of (I-T-I . E-) (5.19)
Substitute inner variables in (5.18) to give
1
N+ "y v Eﬁwl(li[1+log|ex €Hcot al)
1 dy, (2)
L L —3Fr—s9n (2-7) log 2|%-g]|dc
1 dv,(3)
- %f{- _-%E_— Ezzg%SQE-Edc + o(e?) (5.20)
Tt +l 2-7>0
where sgn (2-7) = { ] %-7<0 (5.21)

So the one-term inner expansion of the two-term outer

expansion is:

1
no + ﬂlm - 7?71(2)[1+ logIXI]

L [t av@

* 5= ar- e sgn (z-tz) log 2|z-z|dg
-1

Next, substitute outer variables in (5.6) to give the two-

(5.22)

term outer expansion of the one-term inner expansion:

y v h - eAgsin alog x| + eAysin alog e+ €E (5.23)




66

where
Eo = Ao[sin olog Ao - w{cos a-bo) - Mosin a- Rocos a)

rrom (5.19), (5.22) and (5.23), the intermediate matching gives

- ina - €E, - i
h = 610915A051n @ - €Ey = 5= v, (2)
1 dy, (2)
v —gz—s9n (z-7) log 2|z-z|dz (5.25)
-1

where Eo is gaven in (5.24)

The leading term in the inner soluticn is -eA;sin alog|x|;
this term is exactly matched to one term in the outer soiution
= %; Y, (2) log |x|. This shows that the anomaly in the classic
solution is just part of»auprgpe:ngear-field expansion of the
complete solution. It is also noted that fér.aﬁay from the
planing surface, if AR approaches infinity or €+0, physically
it corresponds to a large span of small chord length and the
planing surface shrinks to a line. To this lowest order,
there is no disturbance in the far field, which agrees with
the description in (5.25).

The location of the planing surface is now uniquely
defined with respect to the undisturbed free surface. 1In
natural variables, (5.25) gives

a a
0 . . 0 _ - _ o3
h = FTE;:E;T[Sln a* log (ETBB;E;ﬁ m{cos a bo) M0~1n o
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1l
- . sin «a a_ % - -
Rycos a + sin a] + —75—:1' az%g;:g;)sgn (z-7)log 2]|z-z|dzg
-1 (5.26)

where Mo, Ro are defined in (4.12b). This is the important

result of this chapter.

V. 5. Second~Order Inner Free-Surface Solution

Far away, the inversion formula gives:

C

zZ = (Ao + Al + tAOSln a)c + A (e * -bo) loq ¢

-1Q .
+ Aoe (Mo-'LRO) + O(E) (5.27)

On the free surface:

c .
_ XD — 1 10 _
2 =X+ 1Y = (A0+A1+1A081n a)g + A (e bo)log £

TQ 0 1
+ Aje (M0 zRo) + O(g) as |g[+m (5.28)

0
Separate the real and imaginary parts and eliminate the
parameter £ to give:
X
)

c
Y —L _ X - A.sin olog |X| + E, + o (

sin o 0 (5.29)

V. 6. Second Order Free-Surface Matching

Let m=2 and n=2 on (2.6):
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IR T

2-T¢ I. Eo Of 2"T.O . Eo

= 2-T. 0. E. of 2-T. I. E. (5.30)

From (5.20), the two-term inner expansion of the two-term

outer expansion is

1
Y4 (2) 1 dy, (¢)
ng *+ Ny v - —5— (l+log [x]) + yed Baar et (z-1)
1 dy, (¢)
° log 2|z-z|dc - 1“ d% zfc dz  (5.31)

-1

In (5.29j), use outer variables to give the two-term outer
expansion of the two-term inner expansion :

(o]

Yy v ng+mvh+ ;I%-ax - €Aysin alog Ix|

+ €log € Aosin a + er[sin alog A,

- 7(cos a-bo) - Mosin o - Rocos al (5.32)

From (5.30), (5.31) and (5.32), matching show that each term

in (5.31) is exactly matched by one term in (5,.,32), and vice

versa. In a sense, this matching is trivial. However, it

L does give a hint that so far the analysis is correct.




VI. HYDRODYNAMIC-LIFT CALCULATION

VI. 1. éhord Length of the Planing Surface

The hydrodynamic problem can be completely described by
parameters ags bO' and o for the first-order solution and ays
bl' and ¢y for the second-order solution respectively. However,
those parameters are related to the chord length at each section.
Let the chord length be 2£(z) in natural variable and L(z) in
inner variable. The chord length is mapped onto the f-plane
by the segment |£| < 1 on the real axis n=0 in Figure 3.2.
The trailing edge and leading edge of the plate are mapped
onto = 1,-1 respectively. From equation (3.11), the chord

length is found to be

1
-ia . H(C')
Llzle = 2y = 2y "f Tz
-1
where Zn and Z, denote the trailing edge and ieading edge

locations, respectively. So
1

_ i0 H(zg' .
%(z) = ce ] WT;"T)"“ (6.1)

-1

A. First-Order Cherd Length Expression
If (3.11) and (3.18) are substituted into (6.1), it

follows that:
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€6 b,-1i
L(z) = ;TBE:E;T [’(1+cob0) log S;:I - 2¢,

+ n/l—co (bo—fgo -1)] (6.2)

The first-order parameters agr bo, and c, are thus related to

the chord length % (z).
B. Second-Order Chord Length Expression

Substitute (4.32a) and (4.36) into (6.1) to give

€(8gt+d;) by+b;-1
2(z) = w(bo+b1+co+c1)[' (1+(Co+cl)(bo+b1y log SE;SI;T

—2(c0+c1) + n/l-(co+c1)2(b0+b1—/(bo+bl)2—1)] (6.3)

Thus, the parameters a bl, and c, are also related to the

chord length 2(z).

VI. 2. Wetted Length of the Planing Surface

A jet is thrown off at the leading edge. Therefore it
is somewhat ambiguous to refer to the "wetted length" in this
case. However, usually the jet thickness is small compared
to the chord length. The "pressure length can thus be defined
as the distance between the trailing edge and the stagnation
point on the planing plate. Then define the "wetted length"

Lw(z) as the pressure length, i.e.,

1
-ta _ _ - H(z')
Ly(z)e = = 2y ZStag_[ weny 4
ck*
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where ZStag denotes the stagnation point.

To the first-order, it is

ed b.+1 2

- 0 O __ .
kw(z) = W {(l+cobo)log bo+co Co + co

/. 2.T 2 2 .. =1
+ v1 co [5(bo-/€o -1) -/&-co + bosxn ( co)

b.c.+1

2 .. =1 7070
+ /bo -1 sin © g2 1} (6.4)
00
To the second order, it is
s(&o+61) . bo+b1+1
L.(2) = 1+ (c,+c,) (b,+b,) log( )
W w(bo+b1+co+c1) 0 "1 01 bo+b1+co+c1

(cgtcy) + (co+c1)2 + Al-(cy*ey) [%(bo+b1-/(bo=bl)z-1

- /1-(co+c1)2 + (bo+b1)sin-1(-co-c1)

b,c.+1
/ , 2_ . =170"0
+ (bo+b1) l.8in Wl } (6.5)

VI. 3. Jet Direction
Let jet angle B be the angle the jet makes asymptotically

with the plate. The jet J in the Z-plane is mapped onto c=-bo.
Equation (3.18) gives

a1+boco-i¢l-coz/b02-1

e(-n+u-8)i= i
b, ¢

e

The real part gives

)

L St ok ey
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l+c0b0

) (6.6)
bo*ce

VI. 4. Lift Force

Lift force can be obtained by integrating pressure along
the platé. This is a near-field problem.

Let P be the pressure in the fluid, F be the force and 1
be the lift on the planing surface per~unit-length in spanwise
direction. For a steady, irrotational, incompressible flow,

the Bernoalli equation gives

P
2 2 2) oL, =
te,) =54 (6.7)

ol
+
N
—
©
+
g

where ¢ is the fluid density. Let P_=0 and use inner variables

to obtain:
P 1 1
5 r 3T H T+ eT0T) =3 (6.8)

Now assume the following asymptotic expansions exist for P,F,

and 7
N
o ”ngo Pn Pn+1=°(Pn)
as €+0 for fixed X Y
N _
F gy F Fh+170(Fp)

as ¢+0 for fixed X,Y
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T ”néo n Tn+1=°(1n) (6.9)
for fixed X,Y

Substitute (6.9) into (6.8) to give

P P

0 1 2 2 1
> + 7(¢0x + ¢0Y ) +-3~ + °0x°1x + °0Y¢1!

P

2 1 2 2 2 2
+ 5= + f(°1x + 200x02x + °1Y + 2¢0Y°1Y + € ¢oz )
_1

+ ceoeces -I . (6410)

A. First-Order Lift Force

Keeping only the leading-order terms in (6.10), one obtains:

2 1

2 ) =
oy 2 (6.11)

P
0 1
‘—)— + 5(00)( + ¢

The force on the planing pliate is

t.e

Fo = PodZ (6.12)

JL.e.

where 2.e. and t.e. denote the leading edge and trailing edge
of the planing plate respectively. The integral is taken along
the planing plate. This force is normal to the plate and can
be decomposed into vertical and horizontal components, that is,
1lift and drag, respectively. The lift force per-unit-length

can now be obtained from equation (6.12) to give:
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t.e. 2
19(2) = R2(F,) = Re { » %(1-|wo| )dz} (6.13)

I1f equations (3.16) and (3.10) are substituted into equation

(6.13), one obtains:

29

bo+c

To(z) = p (bo-lgoz-l)fg-cozcos a

0 (6.14)
where ags bo,and Co can be obtained by solving three simul-
taneous equations (3.31), (5.26) and (6.2). The equation (6.14)
gives the lift force per-unit—length in spanwise direction.
This equation agrees with Green's non-linear solution. However,
Green could only compute the lift force in two special cases.
One case is bo+1, which corresponds to the infinitely long
planing plate, that is, the very lightly loaded planing plate.
The other case is bo+w, corresponding to Rayleigh's cavity
flow which is of no interest in the planing problem. 1In the
present work, the lift force can be computed uniquely for
arbitrary angle of incidence and for a heavily-loaded as well
as a lightly-loaded planing ‘' urface. Numerical calculations
will be presented in the next section.
B. Second-Order Lift Force
Equation (6.10) gives
e

1.1 2 2, _ 1
+ F00p+0) y + (9,40,)0] = 5 (6.15)
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The force per-unit-length on the planing plate to the second-

order is:

t'e'

Fo + Fl =ﬁ . (Po+P1)dZ (6.16)

If equations (4.32), (4.36) and (6.15) are substituted into

equation (6.16), the lift force to the second-order is found

to be
. ao+a1
(bo+b1+co+c1)

(bo+b1-J(bo+b1) -l}cos o

L A BRI TG e 85300 PR e

ro(z) + rl(z) = .’1-(c0+c1)2

w
'

e

(6.17)

e

VI. 5, First-Order Numerical Calculation

PSS I

There are three unknowns and three available equations

[RRECEL T T

(3.31), (5.26), and (6.2). Therefore, it appears likely that

PO

a solution can be found. It is noted that o is function of

LA

Rt

a only and is easily obtained. The problem can thus be reduced

to two unknowns with two equations as follow:

2

a
= o i . 0 - =
h = m-FE(-)T[ sSin a log “—W 7 {cos a bo)

1l
. a
- Mosin a - Ro cos a+ sin a] + 28 i/' [d D )

iy © G
2n 1 daz bo+c0
*sgn (z-7)+log 2]z-z|dz (6.18)

a, bo-l
L(z) = W[ - (1+cobo)'log b—(;TI - 200

070
1 + w/l-c, (bo-wﬁoz-l)] (6.19)




TR TR

76

Now a, can be expressed as a functicn of bo, from (6.19). If
ags SC obtained, is substituted back into (6.18), it gives

a non-linear imtegral equation of one variable bo with a
complicated kernel. To perform a numerical calculation, it
is more convenient tc solve a system of two non-linear
equations (6.18) and (6.19) simultaneously than 2 non-linear

integral equation with a very complicated kernel.

Now, express (6.18) and (6.19) symbolically as following:

(n)’ bo(n)) o I.P.(ao("-l), b,‘“-l))

h = g(ao 0

t(2) = £{ay‘™, b, ™) : (6.20)
Where I.P. represents the integral term in (6.18), and the
superscript (n) denotes a value at the n-th iteration. For
the first iteration, integral part is set equal to zero.
The problem requires the solution of the two non-linear

algebraic equations. Then the iteration is terminated if

{(n) (n-1)
ao - a_o ‘7
(n)
30
and
p_ (0 _ p (n-1)
0 0 2 5
b (n)
0 {6.21)

where § is some positive number which is much less than one.
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A. Cusp Shape
Let the chord-length distribution be

L(z) = 20(1-22)1'5 (6.22)

where 20 is the chord length at middie secticon, z=0.

The chord length £(z) and its first derivative with
respect to z are continuous at the tip, @s elsewhere. Recall
that h is the height of the trailing edge above the un-
disturbed free surface; physically, it can be related to a
loading condition on the planing surface. If the loading
is heavy, the trailing edge will be located much below the
vadisturbed free surface and consequently h will have a
large negative value.

For £o=0.4, a=15°, the coefficient of lift-per-unit--
span (local 1lift coefficient) formed with the wetted length
is given in Figure 6.1. for different value of h. Note
that the ordinate scale does not start at zero. The jet
thickness a, at each section is shown in Figure 6.2.

A cusp shape is not a practical shape. More detail
will be discussed for the elliptic shape.

B. Elliptic Shape
Let the chord-length distribution be

Llz) = 20(1-22)0'5 (6.23)

The chord length is continuous at the tip, as elsewhere;

however its first derivative is not continous at the tip.
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Observation from experiments indicates that tip effects are
local phenomena, and the solution obtained from the present
theory can be expected to give a good result except in the
very neighborhood of the tips.

Local 1lift coefficient distribution in spanwise direc-

0, 10%, and 5° are piotted in Pigures 6.3, 6.4,

tion for o=15
and 6.5 respectively for the case £0=0.4. From the defini-

tian of bo, the value of b0 is bounded by

1< bo < =

For the case bo+1, if equations (6.2) and (6.4) are

used, one obtains:

L
fﬂ A0 as b,*1
(o]

where zc is the chord length in natural variable. From

equations (6.4) and (6.14), numerical calculation gives:

o]

To 0.289 for a=15o
— nv 0.214 a=10
pU Rw 0.120 a=52 (6.23)

The upper-bound limit for the local-lift-coefficient is
thus obtained. Note that this upper-bound limit is a

function of a only. This statement can also be seen in
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in Figure 6.8.

For the case bo+°. if equations (6.2) and (6.4) are

used, one obtains:

" 1 as b,+»

Now, if equation (6.6) is used, the jet angle B is found

to be:
B ~ 180 as b -+
This is a cavity-flow. However, this does provide a lower-

bound for the extremely heavily loaded planing surface.

Numerical calculation gives:

;7 0.167 for azlsg
v 0.121 a=1
pUzlw 0.066 a=58 (6.24)

If equation (6.18) is used, the depth of submergence h is

found to be

h v -~ as b, *x

Those upper-bound and lower-bound limits are plotted

in Figures 6.3, 6.4, and 6.% respectively. Note that due
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to the three-dimensional effect, the values of upper-bound
and lower~bound local lift coefficients decrease along the
spanwise direction and approach zero at the tips.
The local lift coefficient at the iniddle section is
plotted with respect to angle of attack a in Figure 6.6.
In Figure 6.7, the ratio of wetted length to chord

length R!_r-;E , at the middle section is plotted against the
c

height of the trailing edge for different values of 20.
In Figure 6.8, lw, at the middle section, is plctted
against local 1lift coefficient for different values of 20

?: for u=15°. It shows that for a small value of lw, say,

5 £W<0.15, the chord length has no significance. The hydro-

% dynamic results are the same whether 20 is 0.8, 0.6, 0.4,

=

or 0.2.

In Figure 6.9, R, is plotted against the local 1lift
coefficient. This figure can also be obtained from Green's
nun-linear solution. It is seen that the local 1lift cceffi-
cient takes a constant value for a fixed a when R2 is small.

For the case a+0, from equations (6.4) and (6.14), one obtains:

—— n %‘na as o0 (6.25)

Wagner (1932) considered the linearized case of an

infinitely long plate and very small a. Wagner gave the
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result as given in equation (6.25). Therefore, the present
non-linear theory does approach Wagner's linearized solution
as a*0. For a finite value of a, the present theory gives
the values of local 1lift coefficient in equation (6.23),
while Wagner's linearized theory gives the value of 0.41l1,

0.274, and 0.137 for a=15°0, 10°

, and 50 respectively. It
is noted that a non-linear effect must be considered if a

is not very small.

VI. 6. Second-Order Numerical Calculation

In order to obtain a unique second-order solution, the
parameters ajys bl' and ¢y must be determined. There are three
unknowns, but so far only two equations (4.45) and (6.2b),
have been obtained. One is obtained from the velocity poten-
tial matching, and the other is from the chord-length rela-
tionship. The second-order free-surface matching fails to
prcvide an additional equation to define the depth of sub-
mergence.

From the first-order solution, it appeared that a
second-order outer solution had to be found to provide a
height reference for the first-~order complete solution.
Accordingly, a third-order outer solution must be found in
order to provide a height reference for the second-order
complete solution. An equation similar to (5.26) will then

be obtained from the free surface-matching. Then the
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second-order hydrodynamic problem will be completely solved.
The third-order outer solution will be formulated in the
next chapter. However, at the present stage, two special
cases can be readily calculated before entering the complicat-
ed third-order outer solution.
*
A. b = bo + bl + 1
This corresponds to a lightly loaded planing surfaces.
The solution similar to Wagner's, with a second-order
correction, can be obtained.
B. Angle of Attack a Is Small
The parameter cy which represents a downwash correction,
is given in (4.43). It is a function of ags bo, Cqr and o
only and can be obtained easily from the first-order solution.
Now, if the angle of incidence is small, the problem can be

linearized as in aerodynamics, so that the second-order effect

is mainly due to downwash. One obtains:

a9

o

/1-(c0+c1) (bo-/boz-l)cos a
(6.26)

19i2) + 1y (2} p(b°+ ¥

1

The solution of cy is given in Figure 6.10 for the case
of an elliptical planing surface. As expected, the solution
for ¢, breaks down at the tips. However, the curves indi-
cate that it is quite a weak singularity at the tips. The

solution can be expected to be valid all across the span



except in the very neighborhood of the tips. Local 1lift
ccefficient is given in Figure 6.11. For a heavily loaded
planing surface, the downwash correction is more significant

than a lightly loaded planing surface.
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VII. THIRD-ORDER OUTER SOLUTION

VIi. 1. Introduction

In order to obtain a complete second-order solution, it
is necessary to solve the far-field problem to three terms.
A third-order free-surface expression relating parameters ay
bl' and ¢, to the depth of submergence similar to (5.26), can
chen be obtained from the matching of the three-term outer
expansion of the two-term inner expansion to the two-term
inner expansion of the the three-term outer expansion. The

second-order problem can thus be completely solved.

VII. 2. Third-Order Outer Boundary-Value Problem

From (2.13) - (2.16), the following are obtained:

(L) ¢’Zxx + ¢’Zyy + ¢222 =0 in fluid (7.1)
1) o w20, + 0 %4 02420 =0
1x 2x T %1y 1z M1%1xy
on y=0 (7.2)
(F2) ¢’1x“1x oy T ¢2y+ ¢’12“12 - n1¢1yy e
on y=0 (7.3)
(R) ’b2x= 0 ; ¢2y = ¢22 =0 as x+r-o,y>=w (7.4)

The free-surface boundary condition (Fl) can be rewritten
as:

90
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2

R § 2 2 _
Oox = = 3(é1, +¢1y +oy, +2n1¢1xy) on y=0 {7.5)

X

The right-hand side of the above equation is known from
the first-and second-order outer solutions. Therefore,
combined with Laplace equation (7.1), the problem is a non-
homogeneous boundary-value problem. The governing differen-
tial equation is lirear and so the principle of superposition
is applicable. The final solution can be obtained by adding
the homegeneous solution to the particular solution.

Define the velocity potential ¢2p to be a particular
solution of this non-homogeneous problem. And let p* be

» 2., 2, , 2
Pom - 5 (0, 40 T 0 Teang0y, )

1xy’ on y=0 (7.6)
Then the dynamic condition (Fl) becomes
*
=

The egquation (7.7) can be interpreted in terms of a pressure
distribution over the free sur”ace. This problem will be
solved by the use of a double Fourier transform. (See Wehausen

& Laitone31)

VII. 3. Third-Order Outer Solution
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Define the double Fourier transform with respect to X

and z to be

Qi(x,y,e) = %f [ ¢(x,y,z)e°ik(x°°3 6+zsin a)dx'dz
-0 Pe0p (7.8&)

Then the inverse transform is

¢(x,y,z) = %i/' g(k'y'e)eik(xcos 0+zsin e)ds-dk
A, (7.8b)

Now take the double Fourier transform of the dynamic condition

(F1) to give:

3. = 8€¢ 0 A%
2" Ixp P on y=0 (7.9)

Next, take the transform of the Laplace equation to give

%

2% _
vy -k ¢2 =0

This is an ordinary differential equation. A general

solution is
$2p(k,y,a) = A(k,y,0)e XY 4+ B(k,y,0)eXY (7.10)

Note that y vertically up is positive. 1If radiation

condition is used, equation (7.10) becomes:
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$pksy,0) = B(k,y,8)e"Y (7.11)

From (7.9) the constant B i determined to give

_ sec 6 ~*
B(k,y,0) = === p (7.12)

So the equation (7.11) gives

y ky sec 6 -ik(xcos 8+zsin 0)
k e) = dx-dz
$2p( /Y.0) tpzr[[ p (x,2)e 7.13)

Take the inverse transform to give

e
¢2P(X,y,z) =%r_[[ tsfrg [ [p (m,y,n)

gtk (mcos 8+4nsin 8) 4 . «dn}

.otk (xcos 6+zsin 8) 5, 40

Integration with respect to k gives:

1]'/2 -] [+
1 2. 2. 2
bppxi¥s7) = - 2[ sec ef j’ (01 01, 401 420, n))
T _-"/2 -00 -0

(x-m)cos 6+(z-n)sin 6

do+dm*dn
(7.14)

Y2+[(x-m)cos 6+ (z-n)sin 9]2

where ¢l(x,y,z) and nl(x,z) are given in (4.11) and (5.17).

The strength yl(z),ul(z), and Xl(z) are given in (4.19).
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Equation (7.14) gives a particular solution. The

homogeneous solutinn is obtained from (4.8); it gives:

1
YY, <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>